Многоэлектродные боковые каротажные зонды

В современной отечественной и зарубежной аппаратуре многоэлектродного БК используются семи- и девятиэлектродные зонды.

Семиэлектродный боковой каротажный зонд состоит из центрального электрода А0, двух пар измерительных электродов М1, М2 и N1, N2 и одной пары токовых экранирующих электродов А1 и А2 (рис. 35,6). Электроды каждой пары соединены между собой и симметрично расположены относительно электрода А0. Через этот центральный электрод А0 пропускают ток I0, который поддерживается постоянным в процессе регистрации. Через экранирующие электроды А1 и А2 пропускают ток IЭ той же полярности, который автоматически регулируется с таким расчетом, чтобы разность потенциалов между электродами М1 и N1 или (что одно и то же) М2 и N2 равнялась нулю. Это равносильно размещению в скважине выше и ниже электрода А0 изоляторов толщиной MN, ограничивающих распространение тока вдоль ствола скважины и ближайших к ней участков разреза. При этом ток I0 распространяется в радиальном направлении на значительное расстояние слоем толщиной, приблизительно равной длине зонда L, обычно 0,6 м (см. рис. 36, б). Напряжение, измеряемое между одним из измерительных электродов М1, М2 или N1, N2 и электродом N, удаленным на значительное расстояние от токовых электродов, представляет собой падение потенциала от скважины до удаленной точки по пласту. Кажущееся удельное сопротивление пород ρк рассчитывают по данным замера разности потенциалов ΔUKC и тока I0 через основной электрод А0 по (II.5). Коэффициент зонда К определяют путем моделирования.

Результат измерений зондом бокового каротажа относят к точке А0. За длину зонда L принимают расстояние между серединами интервалов M1N1 и M2N2 (точками O1 и O2). Расстояние между экранирующими электродами А1А2 называют размером зонда Lобщ. Кроме того, для характеристики зонда введено понятие параметр фокусировки q = Lобщ/ L. При выборе зонда учитывают, что с увеличением Lобщ и q радиус исследования зондом возрастает. На практике для определения сопротивления неизмененной части пласта с проникновением ПЖ рекомендуют применять зонды с q>3. В пластах без проникновения лучшие результаты получают при q≈1,5.

Размещение электродов в семиэлектродном зонде выражается следующей записью: AO,2M1O,2N1l,1A1 что соответствует Lобщ=3 м, L = 0,6 м, q = 5. На диаграмме такой зонд обозначается как La3q5.

Девятиэлектродный зонд состоит из девяти цилиндрических электродов, установленных на корпусе скважинного прибора (см. рис. 35,в). В отличие от семиэлектродного этот зонд имеет дополнительную пару экранных электродов А1 и А2 той же полярности. Применяя в нем разные сочетания электродов, достигают возможности проведения измерения несколькими зондами БК с разным радиусом исследования. Большой размер зонда (L = 7÷8 м) достигается при пропускании через все пять электродов тока одной полярности. Этим обеспечивается значительный радиус исследования при малом влиянии вмещающих пород на показания зонда (рис. 36, в, слева).

Для уменьшения радиуса исследования применяют дополнительные электроды В1 В2 обратной полярности, через которые замыкают цепь тока I0 и IЭ, так называемый псевдобоковой каротаж БКМ. В результате токовые линии от центрального электрода A0 не текут в глубь пласта, а растекаются в непосредственной близости от скважины (слой тока I0 с удалением от скважины быстро расширяется). На этом участке происходит значительное падение потенциала, характеризуя в основном удельное сопротивление пласта, прилегающего к скважине (см. рис. 36,в, справа). Размещение электродов в зонде псевдобокового каротажа выражается записью: А0О,2М10,2N1O,2A1O,9B1, что соответствует Lобщ=1,2 м, L = 0,6 м, q = 2. На диаграмме такой зонд обозначается LB3LAl,2q2.

Возможность проведения многоэлектродным зондом совместного замера несколькими зондами БК с разными радиусами исследований после соответствующего сочетания электродов в них является преимуществом этих зондов перед трехэлектродными.